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R Delbourgo 
Department of Physics, University of Tasmania, Hobart, 7001, Australia 

Received 18 October 1977 

AbOhPct. The gravitational contribution to the anomaly in the axial current divergence, 
i.e. RR*/384n2, is derived via dimensional continuation. 

The contribution of the gravitational field to the axial current anomaly (Kimura 1969, 
Delbourgo and Salam 1972) has assumed a new importance in the context of gravita- 
tional pseudoparticles (Belavin and Burlankov 1976, Eguchi and Freund 1976, 
Hawking 1977) and because of its possible effect on the topology of Yang-Mills fields 
(Charap and Duff 1977). The derivations of the gravitational part of the anomaly 
have in the past been obtained on the basis of regulator fields or through a point- 
splitting procedure. Now that dimensional regularisation has become the method of 
choice for dealing with formally divergent integrals in gauge theories, it is probably 
worthwhile to rederive the anomaly by this technique. We do so below. 

The vector field contributions to the anomaly were worked out by dimensional 
continuation some time ago (Akyeampong and Delbourgo 1973a, b) and the pro- 
cedures used there can guide us in our determination of the gravitational contribu- 
tions. The idea is simply to continue the field theory of spinors, vectors and tensors to 
arbitrary dimension n = 21, and to identify axial vectors and pseudoscalars as three- 
fold or four-fold antisymmetric tensors respectively. The axial anomaly is then simply 
given in terms of expectation values of the evanescent current 

${r $3 r [ r A r u ] } $  (1) 
which vanishes in four dimensions at the classical level but can leave its imprint 
through fermion loop integrals which diverge in four dimensions at the quantum level; 
the product of the disappearing trace, proportional to (1 - 2), and the divergence pole 
(1 - 2)-' leaves the finite anomaly. 

Clearly we must set up general relativity for fermions in arbitrary space-time 
dimensions in preparation for continuation to 1 = 2. This is straightforwardly ac- 
complished in terms of a uierbein field Lz by simply generalising the normal four- 
dimensional procedure. The relevant part of the Lagrangian is then 

a($, L) = (det L)-'[bL""($r,&$)- m$$ +#{ra, I'[8v1}$Ba8y] 

B+ =L:L;(Lypr;u-aJw) 

(2) 
with 

- 1 PA - 2g (avgAN + argAv - a A g A  

g r u  = 7"8LaJ+ 

L2 37 
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ne r[a1...a.l denote r-fold antisymmetric products of the basic r matrices associated 
with the flat-space limit and suitably normalised. We may define the quantum gravi- 
ton field f through the split LE = 8,” + ~ f , ”  and thereby reduce our Lagrangian to the 
form 

~ ( 4 ,  L) = (1 K Tr f + t K 2 [ ( T r  f)2 + V r  f2)I + . . .I 
x[$@. &-mG4 + $ K f @ $ r a J @ 4  +&K2$r[PBr14f@8Jajofsr + o ( K 3 ) ] .  

As we are going to treat gravity classically, we shall impose the mass shell conditions 
aafaB =f, = 0 to obtain the effective interaction Lagrangian 

Sint($, L ) = S K p B @ a J &  +iK2f2pP(J($r .  ~ - m ) ~ - ~ K 2 f ~ ~ a f d ~ r f a s r 1 ~  + 0 ( K 3 )  (3) 

and hence the effective Feynman rules shown in figure 1 

Figure 1. Effective spinor graviton couplings to order tc2. 

The pesuodoscalar-two-graviton amplitude, subject to gauge invariance and mass 
shell conditions, can be decomposed as follows: 

~ & ~ ~ ~ ) ( k l k ~ k 3 ) =  ~ ( k 3 ) S [ : ~ , ” ‘ k ~ ~ k ~ ~ ] ( q ~ l ~ ~ k ~  2 u  . k2-  k l P z k Z P l ) + ( p ~ a  perms) (4) 

where P is a scalar invariant of k; only (remember k: = k: = 0). It automatically 
satisfies kl,,FP:::‘ = k2,F.::Pf’ = 0 from the antisymmetrical structure on the right of (3). 
Likewise the axial-two-graviton amplitude reads 

F[*Aul blulxpzuz)= A ( k ~ ) s ~ ~ : , ” i k ~ + r k ~ ~ ~ ” ( q ~ ~ ~ ~ k l .  k 2  - k?kFi)+ (p -U perms) 
and satisfies the requisite constraints. The axial anomaly itself arises from the 
diagrams of figure 2. Now the beauty of the dimensional technique is that the 
individual axial A and pseudoscalar P form factors need not be separately evaluated; 
rather, the anomaly is immediately obtained by insertion of the evanescent vertex 
{I’ . p, I‘[wAcv~} at the meson leg and extracting the appropriate ‘divergent’ parts of the 
diagrams. 

ki 

k2 

+ 
k2 

+ 

Hgwe 2. Gravitational contributions to the axial anomaly. 
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Thus we need only evaluate the loop integralst 

and 

Tr d 2 ' p { r .  p, r,A,v}.llu1u28~18~(kl - k2)JT. (p + k1)- m]-'Trh'[T. (p - k2)- ml-'. 

Only the first integral is relevant if we concentrate on the kinematic piece 
81".'8,"'kl,k2v~k?'1klP2 of (4). By introducing Feynman parameters, the triangle 
anomaly is thereby reduced to a consideration$ of 

2 J dx dy dz 8(1 - x  - y - z )  1 a2'p(p2 + k 2  3xy - m2)-3 
1 

0 

xTr{{T. p, rKAWv}[r.  ( p + z k l - x k J ) + m ] ( p + ~ k 2 ) P 1 T u 1  

x [ r .  (p +xk2  - ykl)+ ml(p - ykl)P2ru2[r. (p + yk3 - zk2)+ 4 1  
1 

= 2k2P1kP lo dx dy 0(1 - x  - y)xy 

x ~2'p(p2+k32Xy-~2)-3Tr({r.p,rKAL(u}r .pr1ru2r. k l r .  k 2 ) + .  . . J 1 

= 2kf'kP lo dx dy O(l - x  -y)xy 

x J (k32xy-m2)'%yO(l-x-y)dx dy 

Inserting the appropriate numerical factor 
the result may be interpreted as the generally covariant anomaly 

and the various index permutations, 

R K A p a R , v p o ~  KAwv/ 3 84 r2. 

The derivation is therefore really quite easy despite the profusion of indices. 
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